If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25y^2+10y-71=0
a = 25; b = 10; c = -71;
Δ = b2-4ac
Δ = 102-4·25·(-71)
Δ = 7200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7200}=\sqrt{3600*2}=\sqrt{3600}*\sqrt{2}=60\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-60\sqrt{2}}{2*25}=\frac{-10-60\sqrt{2}}{50} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+60\sqrt{2}}{2*25}=\frac{-10+60\sqrt{2}}{50} $
| 12-16y-y²=0 | | 2x+5+18=88 | | 3(z9)-12=0 | | 11c-3=10c+9 | | x2+2x+3=0 | | x2+2x+3=0; | | 4^3a=43 | | -7x-12=-5x+6 | | 13=2(x+2)+3 | | 216^2n=36 | | 17x^2=153 | | K³-4k-45=0 | | -3x+25=4(2x-2) | | 3x^2-14x+16x=0 | | x-x-x-x=8 | | 6^-3x=36 | | 4^2n=42^3n | | (2-w)(2-w)=7 | | a+27=10a | | h^2-1=8 | | 1–3x=2x+1 | | x-3/2=1/2+2x | | c+24=4c | | 3a÷4=5 | | t+20=5t | | 10x+333=383 | | -5-(-w)=-16 | | -5x+12=-9 | | -5-w=-16 | | 3t+16=16t–49 | | 6^4b=25 | | -16x=-40 |